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Abstract

Mastering uniform, stable drop generation is paramount
for successful continuous inkjet printing. This paper
describes a finite element model suited for the simula-
tion of acoustic processes in a 3-dimensional fluid cav-
ity.  The model features include provisions for:
arbitrary-shaped geometries, influence of transducer dis-
placements and position of fluid inlets and outlets to cite
a few. The relevance of our approach is discussed in the
light of comparisons with experimental measurements
of jet breakoff and possible improvements are suggested.

Introduction

The use of inkjet in large width printing applications is
becoming common in industrialized countries where
companies have to meet simultaneous constraints such
as high throughput, large flexibility, and just in time pro-
duction. Particular examples are lottery ticket printing
or billboard production. Continuous ink jet technology1

has found a large acceptance in these areas.
For this technology, uniform stable drop generation

is required for good image quality. For large width ap-
plications, several solutions have been proposed to mini-
mize standing wave effects. These include random noise2

or travelling wave systems3 for jet stimulation. The de-
sign of our large width printer is based on stacking side
by side a number of individual print-modules, each mod-
ule controlling a limited number of jets4. The solution
for obtaining a homogeneous stimulation of these stack-
able modules has been a major part of our research, in-
volving both theoretical and experimental developments.

In the theoretical approach, we use a finite element
code for modelling the vibrating behaviour of the fluid
cavity5. Experimental measurements of jet breakoff are

performed in conjunction with computations to verify
the effect of the main design parameters on jet breakoff
length homogeneity. These parameters include the:
• geometry of the cavity
• number of active transducers
• shape of the stimulating electrical signal

Finally, we demonstrate that our approach contains
the relevant controlling parameters and provides a good
fit with experimental results.

Figure 1. Schematic representation of the droplet generator

Droplet Generator

A multinozzle droplet generator for continuous inkjet
printers must meet several requirements6. It must deliver
a drive perturbation to the nozzle array such that all jets
breakoff into uniformly sized and evenly spaced drop-
lets, within a given length interval. It must also be effi-
cient enough to operate at reasonable head-drive voltages
under satellite free condition with breakup shape being
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similar from jet to jet. The design illustrated in Figure l
meets these requirements.

The active elements are either one or two transduc-
ers symmetrically aligned with respect to the axis of the
droplet generator. Each transducer consists of a metal rod
glued to a piezoceramic cylinder and tuned to vibrate lon-
gitudinally at the working frequency. To ensure a strong
drive to the jets, the distance between the bottom face of
the resonators and the nozzles is chosen such that the
sound waves generated in the liquid-filled cavity are at
near resonance conditions at the operating frequency.

Problem Formulation

Basic Equations
To relate the motion of the fluid to its compression

or dilatation, we need a functional relationship between
the particle velocity   

r
v and the instantaneous density ρ.

If we consider a volume element dV, the rate with which
the mass increases in the volume is (∂ρ/∂t) dV. Since the
net influx must equal the rate of increase we obtain:

  

∂ρ
∂t

+ divρ
r
v = 0 (1)

the equation of continuity. This equation is non-linear.
However, if we write ρ = ρ0 + ρ’, use the fact that ρ0 is a
constant in both space and time, and assume that ρ’ is
very small then (1) becomes:

      

∂ρ '
∂t

+ ρ0div
r
v = 0 (2)

which is the linearized continuity equation.
In real fluids, the existence of viscosity and the fail-

ure of acoustic processes to be perfectly adiabatic intro-
duce dissipative terms7. Here we ignore the effects of
viscosity. We then obtain from the Navier-Stokes sys-
tem, the Euler’s equation governing inviscid flows:

  

∂
r
v

∂t
+

r
v ⋅(∇

r
v ) = − ∇p

ρ (3)

where ∇ is the gradient operator. It can be simplified if
we require ρ’ << 1 and       |(

r
v ⋅ ∇)

r
v|<<|∂

r
v / ∂t| then we ob-

tain assuming p = p0 + p’

  

∂
r
v

∂t
+ ∇p'

ρ0

= 0 (4)

This is also called the linear inviscid force equa-
tion, valid for acoustic processes of small amplitude.

Using equations (2) and (4) and assuming that we
have an adiabatic transformation, one obtains:

∂ 2Φ
∂ 2t

− c2Φ = 0 (5)

where Φ is the velocity potential and c the sound veloc-
ity of the fluid respectively written as:

  
r
v = ∇Φ     and    

c2 = ∂p

∂ρ0





 (6)

The physical meaning of defining a velocity poten-
tial is that the acoustical excitation of an inviscid fluid
involves no rotational flow.

Orifice Impedance
The following assumptions:
• velocity of the vibrating body much smaller than

the speed of sound,
• the amplitude of oscillations negligible compared

to the dimensions of the cavity
• inviscid fluid in the cavity are everywhere satis

ied except in the very neighbourhood of the ori-
fice. A classical analysis consists in describing the
orifice behaviour by a lumped acoustic impedance,
which relates the fluctuating pressures and the
volume flow rate8:

    
0 = ′p2 − ′p1

Q / A0

=
′p

vn

− R − iX (7)

where     ′p2 − ′p1  is the pressure difference between the in-
let and outlet of the orifice, A0 is the orifice area and Q
the flow rate through the orifice, R the orifice resistnace
and X the orifice reactance. As a first approximation,
we will consider R and X to be independent of flow rate.

Periodic Solutions
The active parts linked to the piezoelectric trans-

ducers are assumed to have a known forced periodic dis-
placement of angular frequency ω in the direction normal
to the fluid boundary     

r
n :

    

∂Φ
∂n

= hi (x)e−iωt for i = 1, k (8)

We are only interested in the periodic solutions of
the problem which lead to seek solutions in the form:

      Φ(
r
x, t) = Φ0 (

r
x). e−iωt (9)

The linearized lossless wave equation for the propa-
gation of sound in fluids then reduces to the classical
Helmholtz equation:

    
∆Φ0 + ω 2

c2 Φ0 = 0 (10)

with the following boundary conditions. The cavity
boundaries are rigid, perfectly reflecting the non-active
parts of the system:

    

∂Φ0

∂n
= 0 (11)

At the orifice, equation (8) reads:

      

∂Φ0

∂n
= hi (

r
x) for i = 1,   k (12)
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Taking into account the relationship between p’ and ρ’

    
0

∂Φ0

∂n
− iρ0ωΦ0 = 0 for j = 1,   m (13)

If we restrain to the case of a purely imaginary im-
pedance (R = 0) then the above equation becomes:

    
X j

∂Φ0

∂n
+ ρ0ωΦ0 = 0 for j = 1,   m (14)

k represents the total number of transducers and m is the
total number of orifices.

Numerical Procedure

Dimensional Analysis
To render more tractable the mathematical problem

all the lengths are made dimensionless with respect to
the height of the cavity L. Furthermore we define:

    
ϕ =

Φ0

Φdim

, Φdim = hi L and
X j

ρ0ωd
= l

d (15)

In this study, we shall choose the orifice aspect ra-
tion l/d equal to 1 and h1 = h2 = h unless otherwise speci-
fied. The relationship between the reactance Xj and other
variables as mentioned in (15) is due to Panton and
Goldman8.

The dimensionless equatin for the cavity (Ω’) be-
comes:

    
∆ϕ + ωL

c






2

ϕ = 0 (16)

with different boundary conditions give below for:

rigid boundaries 
    

′Γ 0( ): ∂Φ
∂ ′n

= 0 (17)

moving boundaries 
    

′Si( ): ∂Φ
∂ ′n

= 1 (18)

orifices 
    

′Γ 0( ): ∂Φ
∂ ′n

+
ρ0ωd

X j

L
d

ϕ = 0 (19)

Finite Element Method
We use the variational approach to formulate the fi-

nite element equations9. The calculus of variation is con-
cerned with the determination of a stationary value for a
functional which is defined by an appropriate inte-
gration of the unknowns over the domain. Let us take

    
V = v ∈ H 1 ( ′Ω ),

∂v
∂ ′n

= 0 on ′Γ 0








 to be the space for the

test functions. The followings variational formulation is
then obtained for     ∀v ∈V :

    
∇ϕ∇vdx − ωL

c




′Ω∫

2

ϕvdx +
ρ0ωL

X jj
∑ ϕv(s)ds = hiv(s)ds′Si∫

i
∑′Γ j∫′Ω∫

(20)

The three-dimensional domain is constituted of lay-
ers of two-dimensional domains divided into triangular

plate elements. The three-dimensional elements are pen-
tahedrons formed with the basis of the triangles. The
discretization yields about 7500 brick finite elements
domains. The meshing and solving of the set of alge-
braic  equations by the Crout’s method are performed
using the finite element package MODULEF10.

Experimental

In order to test the theoretical approach, we have per-
formed breakoff length (BOL) measurements, since
theories of jet breakup11 show that there exists a quali-
tative relationship between the breakoff distance and
the normal pulsating velocity vn of the jet in the form

    

∆BOL
BOL

≈
∆vn

vn

. The experimental configuration chosen is

the eight nozzle droplet generator with two transducers
which yielded the best results in terms of BOL homoge-
neity. The working frequency (f) of the transducers is
83.3 kHz and they can be excited up to 150 volts by
separate drivers which also give means to vary the phase.
The distance mm and the nozzle diameter is 50 µm. The
fluid used is ink with a viscosity η of 5 mPa.s. a surface
tension σ of 40. 10-3 N/m and a sound velocity mea-
sured by a pusle-echo method12 equal to 1600 m/s. The
jet velocity is kept constant at 20 m/s corresponding to a
Reynolds number based on orifice diameter: Re = 200.

The jets’ breakoff is studied using the shadowgraph
technique. A light emitting diode triggered by the fre-
quency supply of the transducers produces a shadow
profile of the jet diameter (the jet is opaque). The con-
sidered jet profile is magnified and displayed on a VDU
by means of a CCD video camera. Two quantities are
measured:

• the perturbation wavelength λ is determined in
order to verify the mean velocity U0 of the jet (using the
relation U0 = λf).

• the interruption of the jet shadow nearest to the
nozzle is measured to obtain BOL.

In order to determine BOL with an accuracy better
than one wavelength, a variable phase shift between the
frequency signal and the light peaks allows to strobo-
scope the jet shadow at different relative times i.e. at
different axial locations. The BOL is directly read on a
digital display connected to the translation stage hold-
ing the droplet generator. The homogeneity between the
jets breakoff is defined by the relative deviation in BOL
as (BOL-BOLave)/BOLave, where BOLave is the average
breakoff length of all jets.

Results and Discussion

Influence of the Number of Active Transducers on
BOL Homogeneity

Figures 2 and 3 give the computed lines of velocity
equipotential and their values respectively in the case of
one and two transducers for a 9 mm high cavity. Loca-
tions of the orifices are indicated by the reference 26 in
the figures. Note that in both cases we obtain a plane
wave in the middle of the cavity which is deformed as
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one approaches the nozzle surface. The velocity
equipotentials also show that the homogeneity is better for
the two-transducers configuration than for the single one.
The former case will be considered as the reference in
the following. For the reference case, the absolute val-
ues of the orifice potentials lie between 1.9 and 1.5. For
the single transducer configuration, absolute values of
the orifices potentials lie between 0.5 and 1.2. The double
transducer configuraiton is theoretically more efficient.

Figure 2. Computed contour velocity potential lines in a 9 mm
high cavity for a single transducer configuration

Figure 3. Computed contour velocity potential lines in a 9 mm
high cavity for a double transducer configuration

As expected from the computed velocity potentials,
Figure 4 depicts a large difference in terms of homoge-
neity for the two above configurations with a dispersion
of almost +/- 30% in BOL (it is in fact the relative de-
viation in pulsating velocity amplitude which is consid-
ered) for the single transducer droplet generator. The
single transducer droplet generator shows a shorter BOL
in the centre jets as compared to the outer jets. This is in
contrast to the behaviour obtained with the two trans-
ducer configuration.

Figure 4. Relative deviation in BOL for single and double
transducer configuration

Comparison between Model and Experiement for the
Reference Case

The computed relative deviations in jet velocity are
shown to agree well with experimental relative devia-
tions in BOL in Figure 5. Note the asymmetric behaviour
of the jets observed experimentally. This may be attrib-
uted to differences in transducer or nozzle characteris-
tics. The computed and experimental values agree quite
well since they are within the experimental scatter.

Figure 5. Comparison between model and experiment for the
two transducer system
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Influence of the Stimulating Electrical Signal on BOL
Figure 6 represents the case where the transducer

displacements are out of phase (h1 = -h2). Here the com-
parison between computed and experimental results is
only fair. The inviscid fluid assumption does perhaps
increase the discrepancy. The results illustrate however
the possibility to vary breakoff homogeneity with rela-
tive phasing between transducers.

Figure 6. Comparison between model and experiment for out
of phase stimulation

Figure 7. Computed contour velocity potential lines in a 4.9
mm high cavity for a double transducer configuration.

Influence of the Geometry of the Cavity
Figure 7 shows the computed lines of velocity

equipotentials and their values for a 4.9 mm (almost λ/

4) high cavity. This typical vibrating behaviour of the
cavity corresponds to the transverse standing wave pat-
tern which renders quite difficult homogeneous breakoff
in large width printers.

Conclusions

In this paper a finite element analysis has been described
for simulating acoustic excitation in a 3-dimensional
fluid cavity. To demonstrate the relevance of this analy-
sis, it was applied to practical situations found in ink-jet
printing. In general, the agreement between predicted
values and experimental measurements are fair to good.
The model also allows the study of the influence of
nozzle aspect ratios and position of fluid inlets and out-
lets. Planned extensions of this preliminary study are to
consider relative phasing between a number of transduc-
ers, taking into account more general types of orifice
impedance. The final goal is to provide an interactive
software capable of sustaining computing and visualiza-
tion and thus rapid design. This implementation is in-
tended to serve as a step in the direction towards enabling
computational experiments as a parallel path to hard-
ware development in ink-jet printing processes.
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